Une classe d'équations cubiques
نویسندگان
چکیده
منابع مشابه
Sur une classe de formes biquadratiques semi-definies positives
Continuing the study of positive semidefinite biquadratic forms on Rm × Rn ([1], [9] and [10]), we characterize those among them that are the sum of squares of bilinear forms.
متن کاملSur Une Classe De Formes Biquadratiques Semi-définies Positives * on a Class of Positive Semidefinite Biquadratic Forms
Continuing the study of positive semidefinite biquadratic forms on Rm × Rn ([1], [9] and [10]), we characterize those among them that are the sum of squares of bilinear forms.
متن کاملTorsion des courbes elliptiques sur les corps cubiques
We give the list (up to one element) of prime numbers wich are the order of some torsion point of an elliptic curve over a number field of degree 3.
متن کاملA Complex Hyperbolic Structure for Moduli of Cubic Surfaces
We show that the moduli space M of marked cubic surfaces is biholomorphic to (B −H)/Γ0 where B is complex hyperbolic four-space, where Γ0 is a specific group generated by complex reflections, and where H is the union of reflection hyperplanes for Γ0. Thus M has a complex hyperbolic structure, i.e., an (incomplete) metric of constant holomorphic sectional curvature. Une structure hyperbolique co...
متن کاملG Eom Etrie Alg Ebrique/algebraic Geometry a Complex Hyperbolic Structure for Moduli of Cubic Surfaces Version Frann Caise Abr Eg Ee
We show that the moduli space M of marked cubic surfaces is biholomorphic to (B 4 ? H)=? 0 where B 4 is complex hyperbolic four-space, where ? 0 is a speciic group generated by complex reeections, and where H is the union of reeection hyperplanes for ? 0. Thus M has complex hyperbolic structure, i.e., an (incomplete) metric of constant holomorphic sectional curvature. Une structure hyperbolique...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de la faculté des sciences de Toulouse Mathématiques
سال: 1985
ISSN: 0240-2963
DOI: 10.5802/afst.623